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Pharmacogenomics (PGx) is the study of the linkage be-
tween an individual’s genome and the specific medi-

cations. While most people respond differently to drugs, 
it has only been since the documentation of the human 
genome in 2003 that we have been able to make a tighter 
genetic connection with drug metabolism.[1] The potential 
usefulness stems from the ability to reasonably predict an 
individual’s response to a medication before prescribing 
it for possible dose modification in regard to the adverse 
drug reactions. It initiates with the links of biomarkers to 
the specified drugs with subsequent development of dos-
ing algorithms and drug label information.

Methods
The objective of this study is to assess the clinical useful-

ness of PGx in 2018. We compared and analyzed the data 
from the Food and Drug Administration (FDA), Clinical 
Pharmacogenetics Implementation Consortium (CPIC) 
and Pharmacogenomics Knowledgebase (PharmGKB), 
which represent the three key organizations in the Unit-
ed States (US) overseeing PGx. FDA[2] is a US government 
agency chartered to ensure the public safety by overseeing 
approval and guidelines for prescription drugs. CPIC[3] is a 
consortium of professionals from the medical, pharmacy, 
and research communities originated in 2009 by the Phar-
macogenomics Research Network (PGRN) and PharmGKB. 
The CPIC informatics group was formed in 2014 to develop 
clinical decision support (CDS) standards to be implement-
ed in personal health records (PHR). Likewise, PharmGKB[4] 
is the US government funded organization chartered to 
support the FDA with research and recommendations re-
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lated to the use of PGx. All three autonomous organiza-
tions maintain databases for PGx informatics and evaluate 
the same or other medications. But at times they evaluate 
each other’s findings and maintain distinctive systems of 
evidence-based confidence levels of drug-gene pairs.

We also sampled nine drugs with PGx implications from 
the CPIC level of highest confidence for existing guide-
lines, recommendations, and prevalence in patient co-
horts from genome-wide association studies (GWAS).[5] 
GWAS analyzes the individual genomic variation for as-
sociated traits including drug reactions. GWAS is used to 
develop a drug-gene pairs for these nine exemplary drugs. 
Dosing and guideline recommendations are taken from 
CPIC, PharmGKB, FDA and ClinCalc[6] for analysis to devel-
op the current trend of progression. ClinCalc is an online 
tool to help medical professionals calculate medications 
dose and support the clinical decisions based on the cur-
rent evidence.

Search Techniques
FDA, CPIC and PharmGKB databases were used for sup-
porting the recommendations, drug-gene pair data, levels 
of confidence, and FDA PGx label indications and dosing 
formulations. PubMed’ database was employed for locat-
ing GWAS and comparative analysis in the results and dis-
cussion sections. Studies exhibiting clinical application of 
pharmacogenomics were identified with the keywords: 
“Clinical pharmacogenomics” OR “Clinical use of pharma-
cogenomics” OR “Pharmacogenomic tests” to illustrate 
the state of tactical implementation of pharmacogenom-
ics. Similarly, non specific combination of keywords used 
to identify studies for the nine exemplary drugs include: 
"Pharmacogenomics" OR "Pharmacogenetics" OR "GWAS" 
OR "Clinical significance of pharmacogenomics" OR "Clopi-
dogrel Pharmacogenomics” OR “Codeine Pharmacogenom-
ics” OR “Warfarin Pharmacogenomics” OR “Tacrolimus Phar-
macogenomics” OR “Carbamazepine Pharmacogenomics" 
OR "Abacavir Pharmacogenomics” OR “Thiopurine Pharma-
cogenomics” OR “Statins Pharmacogenomics” OR “Phenyt-
oin Pharmacogenomics" OR "Thioguanine Pharmacoge-
nomics." Only the studies reporting incidence of drug-gene 
pairing within specific cohorts have been selected to illus-
trate the significance of applied pharmacogenomics with 
exemplary drugs.

Compilation of screening criteria used to identify articles of in-
terest for this review for each exemplary drug (Fig. 1). Criteria 
were progressively filtered and refined from top to bottom. 

Explanation of Analysis

A descriptive analysis was performed to determine the 
quantity and quality of PGx clinical data. As a prerequisite, 

the rating systems are explained, and these levels repre-
sent the respective way to state their level of confidence in 
evidence to qualify their recommendations (Table 1).

Results

Data Analysis of Drug-Gene Pairs

292, 352 and 651 drug-biomarkers pairs with PGx interest 
were identified within FDA, CPIC and PharmGKB respec-
tively (Table 2). CPIC and PharmGKB have tier system to 
quantify the extent of each organization’s accounting for 
drug-gene pairs as well as the difference between their lev-
els of confidence.

Drug Level

The strategic differentiation of drug-gene pairs was to es-
tablish a roster that demonstrated the highest level of con-
fidence among these three organizations (Table 3). CPIC 
level A was the only level offering the confidence needed 
for clinical application as per their guidelines. It was used to 
select the best indications and subsequently compared to 
PharmGKB and FDA to develop a solid count.

Graded Confidence Levels

An analysis of drug-gene pairs mentioned above was per-
formed as an indication of the overall confidence level after 
considering recommendations from FDA, CPIC and Phar-

Figure 1. Flowchart showing the screening criteria to identify relevant 
articles for this descriptive review.
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mGKB (Table 4). 27 amongst them met the highest level 
of confidence, which were used as a selection pool for this 
study to provide nine exemplary drugs chosen by us.

Exemplary Drugs

Nine drug-gene pairs were selected from the 27 highest 
confidence levels given above based on their numerical 
impact upon total prescriptions and additional measure of 
clinical significance. We tabulated their uses, mechanisms 
of action (MOA), genomic associated alleles, dosing guide-
lines from PharmGKB and normal/actionable percent of co-

horts extracted from GWAS (Table 5). The DNA biomarkers 
referenced in the following table consist of genes, single 
nucleotide polymorphisms (SNP) and alleles taken from 
GWAS. Genes are labeled with a text string of upper-case 
letters and numerals. SNPs, the most common type of ge-
netic variant consisting of only one changed nucleotide, 
are labeled with a lower case of “rs” followed by numerals 
with each SNP having one unique identifier.[9] Alleles are 
documented with an asterisk (*) followed by a numeral, 
with each pair of alleles divided by a “/”. Pairs of alleles con-
taining the same numerals are homozygous and with dif-

Table 1. Explanation of PGx levels from Food and Drug Administration (FDA), Clinical Pharmacogenetics Implementation Consortium (CPIC) & 	
Pharmacogenomics Knowledgebase (PharmGKB)

	 FDA actionable PGx

Advisory	 Interpretation

Test required	 Requires test conducted to determine that patient’s sensitivity to drug. 
Test recommended	 The testing recommended but not required.
Actionable PGx	 Information given about dose or efficacy of a drug to patient subgroup without mention of a test.
Informative PGx	 A gene or protein is mentioned but no difference of response in patients having that difference is suggested.

	 PharmGKB evidence levels

Level	 Interpretation

1A	 Denotes PGx guideline from CPIC, PGRN site, other significant hospital, or medical society endorsement. 
1B	 Based on more than one cohort showing significance with a lot of evidence and a significantly affected percent 	
	 of patients.
2A	 Contains association with Very Important Pharmacogene (VIP) per PharmGKB.
2B	 Contains a moderate amount of evidence where the affected group may be small and statistical significance is 	
	 less than 2A.
3	 Contains evidence of only a single study that has not been repeated or multiple studies that lack statistical 		
	 significance.
4	 Contains evidence that comes from a study lacking statistical significance.

	 CPIC levels

Level	 Interpretation	 Evidence

A	 Prescription of drug should be changed.	 High
B	 Genetic based dosing may be indicated but dose is like non-genetic based dose.	 Weak
C	 No convincing genetic evidence exists. No changes are recommended.	 Mixed
D	 Few studies are published. No changes are recommended.	 Mixed

Data derived from the FDA (www.fda.gov), CPIC (https://cpicpgx.org), and PharmGKB (www.pharmgkb.org).

Table 2. Comparison of databases from Food and Drug Administration (FDA), Clinical Pharmacogenetics Implementation Consortium 
(CPIC) & Pharmacogenomics Knowledgebase (PharmGKB) showing the number of drugs with PGx interest

Agency	 Drug-biomarker pairs				    Tier†

		  Tier 1	 Tier 2	  Tier 3		   Tier 4	 Tier 5	 Tier 6

FDA‡	 292	 –	 –	 –		  –	 –	 –
CPIC	 352	 48-A	 87-B	 12 -B/C		  72- C	 34-C/D	 99-D
PharmGKB	 641	  46-1A 	 70-2A	 –		  59-3	 6-4	 64-None
		   10-1B	  91-2B	

Data derived from the FDA (www.fda.gov), CPIC (https://cpicpgx.org) and PharmGKB (www.pharmgkb.org). †: Tier quantifies the extent of each 
organization’s accounting for drug-gene pairs as well as the difference between their levels of confidence; ‡: FDA does not have tiers.
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ferent numerals are heterozygous.

Exemplary Drugs with FDA Labels

7, out of 9, exemplary drugs had FDA label summaries that 
were detailed well enough to illustrate further depth into 
the clinical application of genetic dosing algorithms. These 
exemplary drugs were tabulated with corresponding FDA 
labels to show additional depth of support for dosing 
recommendations (Table 6). FDA label summaries were 
derived from the original NIH public database[23] for place-
ment into PharmGKB.

Biomarkers are grouped into normal and actionable cat-
egories. These genetically actionable/normal percentages 
are plotted to illustrate the significance of the application 
of pharmacogenomics for each of these exemplary drugs 
(Fig. 2). Specific actions are tied to different biomarkers 
which may consist of using an alternative drug, raising or 
lowering the dose depending on the dosing algorithms. 
The percent of individuals who are not having actionable 
drug-biomarkers are marked as normal and the rest as ac-
tionable. Prescription statistics are taken from ClinCalc.[6]

Warfarin

Finally, we chose warfarin from these exemplary drugs to 
show the wide variation on dosing algorithms based on its 
actionable allele combination (Fig. 3). 26% of the popula-
tions have normal alleles while 74% carry at least one action-

able alleles (2% with three actionable alleles, 21% with two 
actionable alleles, and 51% with three actionable alleles).[13, 

14] GWAS studies imply that over 70% of the population has 
genetically actionable drug-gene pairs for warfarin.

Table 4. Summation of graded confidence levels based on 
Clinical Pharmacogenetics Implementation Consortium (CPIC), 
Pharmacogenomics Knowledgebase (PharmGKB) & Food and Drug 
Administration (FDA) 

Confidence Level Criteria	 Count

CPIC level A	 48
PharmGKB level 1A	 36
PharmGKB level 1B	 2
PharmGKB level 2B	 2
PharmGKB level 3	 7
FDA label indicators	 37
CPIC A, PharmGKB 1A and an FDA label indicator †	 27
CPIC level A and PharmGKB level 1A, but no FDA	 8
label indication	
CPIC level A and FDA label indicator but have the	 7
PharmGKB level of 3	
CPIC A, a PharmGKB 2A and an FDA label indicator	 1
CPIC A, PharmGKB 2A with no FDA label indicator	 1
CPIC A, PharmGKB 1B and no FDA indicator	 1
CPIC A, no PharmGKB and no FDA indicator	 1
† Indicates the 27 highest confidence level

Data derived from the FDA (www.fda.gov), CPIC (https://cpicpgx.org) and 
PharmGKB (www.pharmgkb.org).

Figure 2. Figures showing the number of normal/actionable drug bio-
markers prescriptions percentages for the nine exemplary drugs to 
show their quantitative effect.
Data derived from the FDA (www.fda.gov), CPIC (https://cpicpgx.org) and 
PharmGKB (www.pharmgkb.org).

Figure 3. Pie chart showing the allelic variations in warfarin in relations 
to the PGx dosing algorithms.
†Warfarin dosing algorithm shows wide variation based upon the actionable al-
lele combination. The percent distribution in the population shows 26% being 
normal, 2% having three actionable genes, 21% having two actionable genes, 
and 51% having three actionable genes.[13, 14]
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Table 5. Exemplary medications chosen from 27 highest confidence level as per the Clinical Pharmacogenetics Implementation 
Consortium (CPIC), Pharmacogenomics Knowledgebase (PharmGKB) & Food and Drug Administration (FDA) 

Drug	 Gene	 Haplotype, SNP	 PharmGKB Guideline Summary	 % Pop.

Codeine	 CYP450 2D6	 *1/*1,*1/*2,*2/*2,*1/*41, *1/*4,*2/*5, *10/*10	 Use standard dosing.	 77
	 CYP450 2D6	 *4/*10, *5/*41	 Use standard dosing. If no response, 	 12
			   consider alternatives. 	
	 CYP450 2D6	 *1/*1xN, *1/*2xN	 Avoid codeine because of potential 	 1-2
			   toxicity.	
	 CYP450 2D6	 *4/*4,*4/*5, *5/*5,*4/*6, *5/*5,*4/*6	 Codeine shows lack of efficacy and	 5-10
			   should be avoided.	
Warfarin	 CYP2C9, VKORC1	 Lacks (CYP2C9 rs1799853, rs1057910 & VKORC1	 Use standard dosing.	 26
		  rs9923231)	
	 CYP2C9, VKORC1	 VKORC1 and CYP2C9*2 and *3 OR CYP2C9*5,	 Decrease standard dose by 15-30%.	 51
		  *6, *8, or*11	  
	 CYP2C9	 If CYP2C9*2/*5 present, OR if two variant alleles 	 Decrease standard dose by 20-40%.	 21
	 CYP2C9, VKORC1	 All (CYP2C9 rs1799853, CYP2C9 rs1057910,	 Use alternate treatment. Dosing	 2.4
		   VKORC1 rs9923231)	 algorithms vary widely for specific
			   biomarkers in this group.	
Clopidogrel	 CYP2C19	 Lacks rs4244285	 Use standard dosing.	 73
	 CYP2C19	 rs4244285, heterozygous 25%, homozygous 1-3%	 Use alternative antiplatelet therapy.	 27
		  *1/*1,*1/*2,*1/*3,*2/*17, *2/*2,*2/*3, *3/*3	
Thioguanine	 TPMT	 *1/*1	 Start normal & adjusting in 2 weeks	 10
			   after steady state.	
	 TPMT	 *1/*2,*1/*3A, *1/*3B,*1/*3C,*1/*4	 Reduce normal dose by 30 to 50 %
			   based on myelosuppression. Allow
			   2 to 4 weeks to reach steady state.	
	 TPMT	 *1/*3B,*1/*3C,*1/*4	 Reduce daily dose by 10X. Dose
			   3X weekly. Allow 4-6 weeks for
			   steady state after each dose
			   adjustment.	
Tacrolimas	 CYP3A5	 rs776746, *1/*1	 Increase starting doses 1.5 to 2 X	 11
(% for Han			   normal starting dose.
Chinese)
CYP3A5	 *1/*3, *1/*6, *1/*7	 Do not exceed 0.3mg/kg/day for	 NA
			   starting dose. Apply drug monitoring	
	 CYP3A5	 *3/*3,*6/*6,7/*7,*3/*6,*3/*7,*6/*7	 Initiate with recommended dose.
			   Use drug monitoring for adjustments	
Carbamazapime	 HLLA-A	 Not HLA-A31:	 If carbamazepine-naive don’t use.	 9-11
	 HLA-A	 HLA-A31:	 If alternatives not available use with 	 Han
			   increased monitoring. Adverse	 Chinese
			   reactions occur within three months	
Abacavir	 HLA-B*57:01	  NOT HLA-B*57:01	 Use standard dose	 94
		  + HLA-B*57:01	 Do not use abacavir	 6
Simvastatin	 SLCO1B1	 *1a/*1a, *1a/*1b, *1b/*1b	 Normal myopathy risk. Start with and	 70
			   adjust with disease-specific guidelines	
	 SLCO1B1	 *1a/*5, *1a/*15, *1a/*17, *1b/*5, *1b/*15, *1b/*17	 Intermediate myopathy risk, use lower	 30
			   dose or other statin, use CK monitoring 	
	 SLCO1B1	 *5/*5, *5/*15, *5/*17, *15/*15, *15/*17, *17/*17	 High myopathy risk, use lower dose or
			   other statin, use CK monitoring	
Phenytoin	 SCN1A	 Test for TPMP status prior to dosing.	 Test for TPMP status prior to dosing.	 1-10

Data derived from the FDA (www.fda.gov), CPIC (https://cpicpgx.org) and PharmGKB (www.pharmgkb.org)
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Discussion
Approximately, 4.5 million patients [24] report side effects to 
medications annually in the US and around 128,000 hospi-
talized patients [25] die each year from prescription based 
medications. There is a wider safety and financial implica-
tions of these adverse drug reactions to general public, and 
third-party insurance providers like, insurance companies, 
corporations that self-fund insurance plans and govern-
ment organizations such as Medicare, Medicaid, and the 
Veterans administration. Johnson [26] implemented a phar-
macogenomic panel test for five genes and showed that 
more than 90% patients had clinically actionable drug-
gene pairs. This finding is also consistent with illustrations 
shown by O'Donnell PH et al., [27] which labels the pharma-
cogenomics as a summation of the outliers in the popula-
tion unable to show normal drug responses. 

We surveyed pharmacogenomics from several vantage 
points on this study. The first examination determined 
the concurrence of the FDA, CPIC and PharmGKB levels 
of confidence of guidelines. All three organizations play a 
high profile roles in a $215M initiative designed to allevi-
ate more than 100.00 deaths per year directly related to ad-
verse drug reactions (ADR), listed as the sixth leading cause 
of death in the US, known as the Precision Medicine Initia-
tive (PMI).[28] In addition to these analyses, we profiled nine 
drugs that have guidelines, dosing algorithms and FDA 
label recommendations as a subset of many more with a 
conservative estimate of 27 meeting the highest levels 
of the three critical organizations. This is in unison to the 
study conducted by SD Mooney,[29] who described the use 
of GWAS and two exemplary actionable drugs: warfarin 
and tamoxifen. 

Undeniably, there is a need for pharmacological genomic 
dosing algorithms for both economic and safety reasons. 
Clinical decision support system (CDS) has been success-
fully developed to represent the existing pharmacogenomic 
knowledge base, locate errors, assigns biomarkers to pa-
tients, provides pharmacogenomic recommendations, and 
identifies inconsistencies in dosing guidelines from different 
sources.[30] Feasibility of unfettered clinical use also depends 
upon supportive technology. One strategy is to build the 
CPIC guidelines into a unified model language system for 
PGx CDS.[31] But there are still many challenges to the success-
ful implementation of PGx applications to the wider popula-
tions including the lack of awareness and tactical application, 
absence of proven associations between many drugs and 
biomarkers, immature development of supporting double-
blind studies, and dosing algorithms that are not yet framed.
[32] A collective effort is necessary for applying genomic tech-
nology to the greater public. The entire stakeholder, includ-
ing the medical educators, students and clinicians needs to 
understand the state of this technology to have confidence 
for its full clinical interpretation and utilization.

Conclusion
PGx can be employed in all patients to significantly de-
crease adverse drug reactions while prescribing actionable 
drugs. It carries a strong clinical safety prospect and 27 
drug-gene pairs have met the highest level of confidence 
from FDA, CPIC, and PharmGKB for PGx screening. There is 
a dire need for accompanying infrastructure with properly 
trained staff. We recommend that PGx should be clinically 
employed to the greater public and any existing objec-
tions for its application are removed to develop this field 
of medicine.

Table 6. Seven exemplary drugs with Food and Drug Administration (FDA) label summary

Exemplary medication	 FDA label summary

Codeine	 CYP450 2D6 variant of *1/*1xN, *1/*2xN associated with death in infants breast fed by mothers having this variant 	
	 due to rapid metabolism conversion of codeine to morphine in milk.  
Warfarin	 VKORC1: G-1639A Variant indicates lower dose requirements in Asians and Caucasians. PROC and PROS1 gene 		
	 variants for protein C and protein S are associated with tissue necrosis following warfarin administration. VKORC1 	
	 and CYP2C9 variants are associated with altered dose recommendations.
Clopidogrel	 CYP2C19*2, CYP2C19*3 & other CYP2C9 variants are associated with low metabolism of clopidogrel which indicates 	
	 using an alternative medication.
Thioguanine	 Patients with certain TPMT variants, the gene that codes for thiopurine methyltransferase, can suffer from life 		
	 threatening bone marrow suppression.
Phenytoin	 Strong risk of Steven Johnsons Syndrome (SJS)/ Toxic epidermal Necrolysis (TEN) in Asian patients having the 		
	 `HLA-B*1502 variant and taking carbamazepine.
Carbamazepine	 HLA-A*3101 associated with hypersensitivity.
	 HLA-B*1502 in Asians associated with fatal dermatological reactions.
Abacavir	 Genetic testing for the HLA-B*5701 allele required. 
	 Hypersensitivity association.

Data derived from the FDA (www.fda.gov).
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Learning points

1. PGx uses individual’s genome to predict nonstandard
reactions to a drug.

2. PGx has progressed continuously since the documenta-
tion of the human genome in 2003.

3. PGx screening is useful in patients who carry actionable
drug-gene pairs.

4. PGx should be clinically employed in the field of medi-
cine for optimal patient output.

5. A collective effort from all the concerned stakeholders
is necessary for the effective clinical application of PGx.
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